The Unique Chemistry of Eastern Mediterranean Water Masses Selects for Distinct Microbial Communities by Depth
نویسندگان
چکیده
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.
منابع مشابه
Spatial patterns of bacterial and archaeal communities along the Romanche Fracture Zone (tropical Atlantic)
The composition of prokaryotic communities was determined in the meso- and bathypelagic waters funneled through the Romanche Fracture Zone (RFZ, 2°7'S, 31°79'W to 0°6'N, 14°33'W) in the tropical Atlantic. Distinct water masses were identified based on their physical and chemical characteristics. The bacterial and archaeal communities were depth-stratified with a total of 116 and 25 operational ...
متن کاملComparing demersal megafaunal species diversity along the depth gradient within the South Aegean and Cretan Seas (Eastern Mediterranean)
Knowledge on biodiversity patterns of demersal megafaunal species in the Mediterranean and particularly in its eastern basin is still very scarce. In the present study, fine-scale diversity patterns in relation to depth were analyzed for three major megafaunal groups (fish, cephalopods and crustaceans) in three subareas of the eastern Mediterranean (Crete, Cyclades and Dodecanese islands). The ...
متن کاملPhylogenetic diversity of sediment bacteria from the deep Northeastern Pacific Ocean: a comparison with the deep Eastern Mediterranean Sea.
The variability of bacterial community composition and diversity was studied by comparative analysis of five 16S rRNA gene clone libraries from deep-sea sediments (water column depth: 4000 m) of the Northeastern Pacific Ocean and Eastern Mediterranean Sea. This is the first comparison of the bacterial communities living in these deep-sea ecosystems. The estimated chlorophyll a, organic carbon, ...
متن کاملMicrobe biogeography tracks water masses in a dynamic oceanic frontal system
Dispersal limitation, not just environmental selection, plays an important role in microbial biogeography. The distance-decay relationship is thought to be weak in habitats where dispersal is high, such as in the pelagic environment, where ocean currents facilitate microbial dispersal. Most studies of microbial community composition to date have observed little geographical heterogeneity on a r...
متن کاملVariations in Microbial Community Structure through the Stratified Water Column in the Tyrrhenian Sea (Central Mediterranean)
The central Mediterranean Sea is among the most oligotrophic habitats in the marine environment. In this study, we investigated the abundance, diversity and activity of prokaryoplankton in the water column (25–3000-m depth) at Station Vector (Tyrrhenian Sea, 39°32.050′ N; 13°22.280′ E). This specific water column consists of three different water masses (Modified Atlantic Water (MAW), Levantine...
متن کامل